Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.

نویسندگان

  • H Gomi
  • Kawato
چکیده

For the last 20 years, it has been hypothesized that well-coordinated, multijoint movements are executed without complex computation by the brain, with the use of springlike muscle properties and peripheral neural feedback loops. However, it has been technically and conceptually difficult to examine this "equilibrium-point control" hypothesis directly in physiological or behavioral experiments. A high-performance manipulandum was developed and used here to measure human arm stiffness, the magnitude of which during multijoint movement is important for this hypothesis. Here, the equilibrium-point trajectory was estimated from the measured stiffness, the actual trajectory, and the generated torque. Its velocity profile differed from that of the actual trajectory. These results argue against the hypothesis that the brain sends as a motor command only an equilibrium-point trajectory similar to the actual trajectory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are complex control signals required for human arm movement?

It has been proposed that the control signals underlying voluntary human arm movement have a "complex" nonmonotonic time-varying form, and a number of empirical findings have been offered in support of this idea. In this paper, we address three such findings using a model of two-joint arm motion based on the lambda version of the equilibrium-point hypothesis. The model includes six one- and two...

متن کامل

Postural force fields of the human arm and their role in generating multijoint movements.

When a perturbation displaces the human hand from equilibrium, arm muscles respond by producing restoring forces. When a set of displacements are given at various directions from the same equilibrium position, the resulting restoring forces form a "postural force field." It is not known whether these postural forces are related to those generated when a reaching movement is executed. However, i...

متن کامل

Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis.

We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate m...

متن کامل

Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.

Stiffness properties of the musculo-skeletal system can be controlled by regulating muscle activation and neural feedback gain. To understand the regulation of multijoint stiffness, we examined the relationship between human arm joint stiffness and muscle activation during static force control in the horizontal plane by means of surface electromyographic (EMG) studies. Subjects were asked to pr...

متن کامل

Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments.

Human arm viscoelasticity is important in stabilizing posture, movement, and in interacting with objects. Viscoelastic spatial characteristics are usually indexed by the size, shape, and orientation of a hand stiffness ellipse. It is well known that arm posture is a dominant factor in determining the properties of the stiffness ellipse. However, it is still unclear how much joint stiffness can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 272 5258  شماره 

صفحات  -

تاریخ انتشار 1996